If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13y^2-18y-90=0
a = 13; b = -18; c = -90;
Δ = b2-4ac
Δ = -182-4·13·(-90)
Δ = 5004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5004}=\sqrt{36*139}=\sqrt{36}*\sqrt{139}=6\sqrt{139}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-6\sqrt{139}}{2*13}=\frac{18-6\sqrt{139}}{26} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+6\sqrt{139}}{2*13}=\frac{18+6\sqrt{139}}{26} $
| 3a+5=-5a-2 | | X+0.112x=180 | | 4+3n=n+6 | | 12x=-14/6 | | 9x²-3x+5x-5x²=x | | 6x-40=12-0,5x | | 2x○=12 | | 2x°=12 | | (2(x×x))=12 | | X=11+x/2 | | (2y)y-18=y(2y) | | 5+x=11× | | -1+5×=3+7x | | -1+5=3+7x | | 57=15^(x) | | (2x-11)-(4x+7)=0 | | 3^2x-1=28 | | 3(x-4)²+5(x-3)²=(2x-5)(4x-1)-40 | | 8(y+2)=48y | | 8c÷4=12 | | 1/2x-1=-1/3x-22/3 | | 4y-11*2=24 | | 4x-9=-3x-12 | | b/2-0.2=1 | | 4y-11*4=24 | | (x+2)+2x+8x=122 | | (m/4)-(2m-1/m+1)-(1)=O | | X²+16x+28=0 | | 0=40+10t | | a(2+a)=99 | | 16=35x | | 10x+9=149 |